
Graduation internship report

Web application for a generic instance search
using spatial locality on a large database

from a single example

Aurélien Greffard
July-September 2014

IMAC Engineering School
Université Paris-Est-Marne-la-Vallée, France

Visual Cognitive Systems laboratory
University of Ljubljana, Slovenia

Table of Contents

1 Introduction . 4

2 Description of the internship . 5
1 The laboratory . 5
2 Project description . 5

3 Project design and implementation . 7
3 Selective search . 7
4 Fisher vectors . 8
5 Product quantization . 9
6 Query . 10
7 Preliminary results . 12
8 Remaining work . 16

8.1 Possible improvements . 16
8.2 Deployment on a large database . 16

4 Discussion and perspectives . 17
9 Encountered difficulties . 17
10 Complementary roles of the school and the laboratory . 17
11 Professional perspective . 17

5 Conclusion . 18

6 Appendix . 19

1

Introduction

As a student of the French IMAC Engineering school1, I had the opportunity to go abroad during
my last year of study. I chose the University of Ljubljana, Slovenia, in the faculty of Computer and
Information Science2, where I could attend excellent courses of Master level during two semesters.

During the year, I was offered the opportunity to pursue my graduation internship in the Visual
Cognitive Systems laboratory3 on a research project, following the courses I attended in the Univer-
sity, especially the courses Machine Perception and Advanced Topics in Computer Vision, taught by
the assistant professor Matej Kristan. This also turned out to be a great opportunity in my educational
background, in the continuity of the IMAC school.

This report relates my work during this internship, and details the technical implementations of my
project.

Unfortunately, the submission deadline obliges me to write this report one month before the end of my
internship. For this reason, this paper describes only the development phase of the project, not available
yet as the final expected product, and I could not yet test it on the final dataset. However, it gives a
good idea about the functionning of the program and the remaining work until the end of the internship.

Acknowledgments

I want to thank my tutor Matej Kristan4 for his supervision and his help throughout the internship.
Luka Čehovin5 for his feedback and advice and Domen Tabernik6 for his support during the deployment
phase on the servers.

I also thank all other researchers and members of the ViCoS laboratory for their warm welcome and
their constant goodwill to communicate in English, allowing me to learn a lot during these three months
in the laboratory.

1 http://www.ingenieur-imac.fr/
2 http://www.fri.uni-lj.si/en/
3 http://www.vicos.si/
4 http://www.vicos.si/People/Matejk
5 http://www.vicos.si/User:Lukacu
6 http://www.vicos.si/User:Doment

http://www.ingenieur-imac.fr/
http://www.fri.uni-lj.si/en/
http://www.vicos.si/
http://www.vicos.si/People/Matejk
http://www.vicos.si/User:Lukacu
http://www.vicos.si/User:Doment

2

Description of the internship

1 The laboratory

The Visual Cognitive Systems Laboratory 7 is a research laboratory attached to the faculty of Infor-
mation and Computer Science of the University of Ljubljana, in Slovenia. It is involved in basic research
in visually enabled cognitive systems, with emphasis on visual learning and recognition.

Research focuses on various theories about requirements, architectures, forms of representation, and
varieties of mechanisms relevant to integration and control of vision systems.

The team, composed of around a dozen of members: professors, researchers and students, is a dynamic
and productive team involved in several applications of cognitive systems including tracking, surveillance,
robotics or cognitive assistants.

2 Project description

The objective this project was to implement a state-of-the-art recognition method (training and recog-
nition phase of the algorithm), available in the end as a web-service from the laboratory’s page. I was
alone on this project, supervised by my tutor Matej Kristan and other researchers from the laboratory.

A web-application performing object detection and categorization already existed online: ViCoS Eye.8.
My long-term goal was then to extend it with my algorithm, using an infrastructure already in place,
consisting of a web interface and a distributed processing backend.

The expected behaviour of the web-service is shown on Fig. 1: the user uploads a picture, selects the
bounding box of the target on this image and launchs the search. The application is now supposed to
find similar regions on all images of a particular database, and to return the best samples.

Similar web-services already exist, such as Google images9, TinEye10, Macroglossa11. But none of
these web-services include locality, only using global image representation for the search. Thus, the
desired application is more specific by including locality at all steps of the method, and by being able to
retrieve particular regions of an image as well as entire images.

7 http://www.vicos.si/
8 http://eye.vicos.si/
9 http://images.google.com/

10 https://www.tineye.com/
11 http://www.macroglossa.com/

http://www.vicos.si/
http://eye.vicos.si/
http://images.google.com/
https://www.tineye.com/
http://www.macroglossa.com/

6

Fig. 1. Expected behaviour of the application on a particular database. The query instance in shown
on the left, delineated by the bounding box. The results are shown on the right. The upper row is the positive
results, with detected regions delineated by the bounding box. The lower row is an example of images without
detected region.

Strategic issues

The objective of this service is to provide an online demonstration of state-of-the-art computer vision
algorithms developed in the laboratory, as a proof of concept of current computer vision research and
recent papers.

Secondarily, this service can be used to eventually find potential clients or investors. For this reason,
the application has to result in a working demonstration available online from a web page and a mobile
application.

No particular technology was imposed on me. The only constraint was to write at the end a wrapper
implemented in Java, to be able to use Hadoop and MapReduce technologies to perform an efficient
parallelization of the algorithm.

The time execution of the recognition algorithm should be adequate for an online application. We
estimate that it is acceptable for a user to wait 2 to 5 seconds [1] [2] for this kind of application. This is
consequently included in the objective of this project.

3

Project design and implementation

At the beginning of the internship, my tutor sent me two interesting papers to study, strongly related
to this project: Locality in Generic Instance Search from One Example [3] and Recognizing Locations with
Google Glass: A Case Study [4], recent comparison of practical implementations adapted to the Google
Glass devices. The first paper was a good starting point, really similar to my objective. I also had the
occasion to read several other interesting papers who helped me to implement the application and reuse
existing code.

My work was divided into small steps, implementing small building blocks working together: explosion
of the image into different regions, construction of global descriptors for all of these regions, compression,
recognition... Each step requiring the previous ones to perform well.

All steps were implemented in Matlab, a useful and fast tool for mathematic research and image pro-
cessing, using VLFeat12 [5], an open source library written in C with interfaces in Matlab, implementing
popular computer vision algorithms.

In this chapter, we will review the implementation details about each development step, evaluate
the preliminary results obtained by the application and discuss the remaining work and possible future
improvements.

3 Selective search

Our objective is to find similarities between our target and particular regions of images in our database.
Thus, we need an efficient way to select and extract regions to compare, robust to scale. The naive way
is to apply a sliding window at different scales on the whole image and to compare each resulting region.
But this is an extremely costly method, not appropriate for practical application with time-demanding
feature extraction and classification. Other methods were proposed to solve this problem, such as ran-
domly sampling the regions, or by using visual words of a Bag-of-Words model combined to a generalized
Hough-transform to predict the location of potential objects. [6]

We decided to use another recent method called Selective Search [7], performing really good. The idea
is to use a bottom-up grouping procedure to generate good object locations. The starting regions are gen-
erated using the Felzenszwalb and Huttenlocher detection method [8], and all the regions are iteratively
grouped together by calculating similarities between neighouring regions, until the whole image becomes
a single region. This allows to capture all scales, is fast to compute and generates a small but relevant
set of regions, basically between 100 and 1000 regions for each image. By using a diverse set of strategies
such as different similarity measures and a variety of colour spaces with different invariance properties,
this method is also able to detect potential objects of different nature, according to texture and colour
at the same time.

The Matlab code for this Selective Search method is available on the web page of the authors Jasper
Uijlings13 and Koen van de Sande14. The Fig. 2 shows a selected subset of regions generated by the
algorithm.

We execute this algorithm on all our images, and we store the coordinates of all the resulted regions.

12 http://www.vlfeat.org/
13 http://disi.unitn.it/~uijlings/MyHomepage/index.php#page=projects1
14 http://koen.me/research/

http://www.vlfeat.org/
http://disi.unitn.it/~uijlings/MyHomepage/index.php##page=projects1
http://koen.me/research/

8

Fig. 2. Example of bounding boxes generated by the Selective Search [7] algorithm.

4 Fisher vectors

All my research algorithm is based on Fisher vector [9] [10] [11] as a global image descriptor for the
regions. This image representation is one of the best-performing state-of-the-art global image descriptors
and can be seen as a generalization of the Bag-of-Visual-Words model [12]. The Fisher vector is obtained
by pooling local image features together, and describes how a set of descriptors deviates from an average
distribution of descriptors modeled by a Gaussian Mixture Model.

Let I = (x1, . . . ,xN),xi ∈ RD be a set of N D-dimensional feature vectors (e.g. SIFT descriptors [13])
extracted from an image. Let Θ = (µk,Σk, πk : k = 1, . . . ,K) be the parameters of a Gaussian Mixture
Model with K mixture components fitting the distribution of the descriptors, where µk, Σk and πk are
respectively the mean, covariance and prior probability for the mode k in the mixture model, assuming
diagonal covariance matrices. The GMM associates each vector xi to a mode k with a strength given by
the posterior probability (soft alignment of xi to the Gaussian k):

qik =
exp

[
− 1

2 (xi − µk)TΣ−1k (xi − µk)
]∑K

t=1 exp
[
− 1

2 (xi − µt)TΣ−1k (xi − µt)
] .

In what follows, we denote by σ2
k the variance vector, i.e. the diagonal of Σk. For each mode k,

consider the gradient with respect to the mean µk and variance σk:

GIµk
=

1

N
√
πk

N∑
i=1

qik
xi − µk
σk

,

GIσk
=

1

N
√

2πk

N∑
i=1

qik

[(
xi − µk
σk

)2

− 1

]
,

where the division between vectors is as a term-by-term operation. The Fisher vector of the image from
where were extracted the descriptors I is the stacking of the vectors GIµk

and then of the vectors GIσk
for

each of the K modes in the Gaussian mixtures:

Φ(I) =

...

GIµk

...

GIσk

...

,

and is therefore 2KD-dimensional.

9

In order to construct the Gaussian Mixture Model required for the Fisher vector computation, we
need a large set of local descriptors from our database. Following the directions from [4], confirmed by
our own tests, we chose to use PHOW descriptors [14], variation of dense SIFT descriptors taken at
different scales. The idea is to randomly select a set of PHOW descriptors extracted from all the images
of our database. Because these descriptors are high dimensional, we reduce them to 64 dimensions using
the Principal Component Analysis (PCA) [15]. This step even has a positive impact on the results, the
obtained decorrelated data being fitted more accurately by the GMM.

As the performance of the GMM construction algorithm is strongly dependant on the initial clusters,
it is beneficial to perform a pre-clustering on the data, instead of starting from random initial clusters.
For this reason, we performed a K-means clustering with all our descriptors and used the results as initial
clusters for the GMM construction.

Finally everything is ready to compute the GMM using the Expectation Maximization (EM) algo-
rithm [16] to optimize a Maximum Likelihood (ML) criterion. We obtain three matrices corresponding to
the GMM parameters, and we store them in our database. With 256 clusters obtained from 64-dimensional
vectors, we store a matrix of 256× 64 dimensions for the means and covariances (the covariance matrix
being diagonal, we just have to store the variances on the diagonal), and a 256-dimensional vector for
the priors.

Once the GMM has been constructed, we can compute the Fisher vectors for all the regions stored in
the database. In order to have a robust scale-invariant detection algorithm, all the regions are resized to
400× 400 pixels. For each resized region, we can now extract a set of PHOW descriptors, reduced to 64
dimensions via PCA, and use our GMM parameters to construct the Fisher vector, global descriptor of
the region.

5 Product quantization

The Fisher vector is a very good and reliable global visual descriptor for an image, but is really high-
dimensional. With 256 clusters in the GMM and 64-dimensional local descriptors, the dimension of the
Fisher vector will be N = 2*256*64 = 32768 dimensions. If we compute this descriptor for hundreds of
regions on thousands of images, this will result in Terabytes of data, impossible to store. We obviously
need a way to compress our data.

We used the Product Quantization method [17] [18] to compress the descriptors. Each Fisher vector
is split into 1024 subvectors, and for each subvector we keep only the index of the closest cluster center
in a given codebook. To construct this codebook, we need another training step, just after the GMM
construction. One again, we use the descriptors randomly extracted from all the images during the GMM
training phase. We select a random set of these descriptors to construct a random collection of Fisher
vectors. As each of these Fisher vectors is constructed from local descriptors taken from different images
from all the database, they are not linked to any region of image, which means that they are general and
universal enough to be a good representation for general objects found in the database.

We split all these randomly constructed Fisher vectors into 1024 subvectors. We obtain a huge col-
lection of 32-dimensional subvectors, from which we can perform a K-means clustering to construct the
codebook. We used 1024 clusters for this codebook, which is then a 1024 × 32 matrix containing the
cluster centers obtained from all our subvectors. The Fig. 3 summarizes the main steps of construction
of this codebook.

Since we have the codebook, we can now perform the Product Quantization [18] method to compress
each Fisher vector extracted from the regions in the data set. For a given Fisher vector, we split it into
1024 subvectors and compare each of these subvectors with each cluster center in the codebook, using
cosine similarity as a comparison method. We keep only the index of the closest cluster. At the end,
the compressed Fisher vector is a 1024-dimensional vector, instead of a 32768-dimensional vector for an
uncompressed vector. We managed to reduce the dimension of the data by a factor of 32. Furthermore,
since we can now store the descriptors as vectors of 16bits integers instead of 64bits doubles, we even
managed to compressed the data memory by a factor of 128 (plus an extra small amount of memory to

10

Fig. 3. Construction of the codebook from random local descriptors.

store the codebook).

This method has two advantages. First, it considerably reduces the size of descriptors in memory. But
it also allows to speed up the recognition algorithm. Indeed, if we have a new Fisher vector to compare
with all our database, we can pre-compute the distance between all its subvectors and all the cluster
centers in the codebook, and store these precomputed values in a 1024× 1024-dimensional look-up table
(Fig. 5). This process is described in the next section.

The Fig. 4 resumes the main steps of construction of the compressed Fisher descriptors from all the
regions.

Fig. 4. Construction of the Compressed Fisher vectors.

6 Query

In this section we describe the search algorithm. A query is represented by an image uploaded by the
user with a region of interest delineated by a bounding box. This region is resized to 400 × 400 pixels
and its n-dimensional Fisher vector u is constructed using PHOW descriptors reduced to 64 dimensions
using PCA. If we want to compare u with the descriptors of all the regions in our database, we will need
to decompress all of them to calculate their similarity value (cosine similarity is the de facto similarity
measure for Fisher vector [12]). This will require a lot of operations and a lot of time. We can significantly
improve this step by using Product Quantization and pre-computing the distance between u and all the
cluster centers in the codebook.

11

Let v be the n-dimensional decompressed Fisher vector describing a particular region in the database,
obtained by pooling 1024 cluster centers from the codebook. By definition, the cosine similarity between
u and v is represented using the dot product and magnitude:

ρ(u,v) =
u · v
‖u‖ ‖v‖

which is equivalent to:

ρ(u,v) =

∑n
i=1 ui × vi√∑n

i=1 (ui)
2 ×

√∑n
i=1 (vi)

2
.

By splitting the vectors u and v into N subvectors (assuming that n is a multiple of N), this measure
can be rewritten as:

ρ(u,v) =
1√∑n

i=1 (ui)
2
× 1∑N−1

j=0

(∑ n
N
i=1 (vNj+i)

2
) × N−1∑

j=0

 n
N∑

i=1

uNj+i × vNj+i

.
We can notice that the first element of this product corresponds to the magnitude of the query Fisher

vector u, independant from the region Fisher vector v. This value can be stored at the very beginning of
the query and does not have to be recalculated for each region.

The second element of the product corresponds to the sum of the sum of each subvectors of the region
Fisher vector v (actually corresponding to particular cluster centers of the codebook). Since they are
independant to u, all these values can even be precomputed during the training step and stored in the
database just after the codebook construction.

The last element of the product corresponds to the sum of the dot product between the subvectors of
u and the subvectors of v (particular cluster centers of the codebook). All these values can be precom-
puted just after the construction of u. From all the cluster centers of the codebook and all the subvectors
of u, we can build a 1024 × 1024 matrix containing all possible combinations of dot products. As the
compressed Fisher vectors contain only indices matching the closest cluster in the codebook, we can now
use this matrix as a simple look-up table and we do not need to decompress the descriptors anymore. This
method avoids a lot of redondant and time-consuming calculation. The Fig. 5 describes how to compute
this look-up table.

Finally, with all these precomputed values:

m = magnitude of u
A = look-up table containing precomputed sum of squared elements for each cluster center
B = look-up table containing precomputed dot products between cluster centers and subvectors from v

and by writing v′ as the 1024-dimensions compressed Fisher vector obtained by compressing v, we can
calculate the cosine similarity between u and v as follows:

ρ(u,v) =
1

m
× 1∑N

i=1A(v′i)
×

N∑
i=1

B(v′i, i).

The cosine similarity is measuring the orientation between two vectors. The obtained value is bounded
between -1 and 1, with a similarity equal to 1 for vectors with same orientation. Thus, we can apply a
threshold to filter our results. Only the regions with a cosine similarity above this threshold will be
considered as positive examples and returned by the application.

12

Fig. 5. Construction of the look-up table. Each cell of the matrix contains a dot product between a cluster
center from the codebook and a subvector from the target’s Fisher vector.

7 Preliminary results

In this section we discuss the results obtained by the algorithm. We test our application on a small
database of 32 images containing the Ljubljana castle, the Ljubljana Franciscan church and the Pisa
Tower, as shown in Fig. 6. In total, the Selective Search generated 22580 regions from these 32 images.
We chose a value of 0.2 for the cosine similarity threshold.

Fig. 6. Examples of images in the database. On the left: Ljubljana castle. In the middle: Ljubljana Franciscan
church. On the right: Pisa Tower.

The Fig. 7 shows our test image, another image of Ljubljana castle hill, with the region focused on
the castle. The program is supposed to retrieve all the regions containing the same castle from all our
images in database.

13

Fig. 7. Training image and bounding box

The Fig. 8 shows the top 40 regions from the 75 regions retrieved by the algorithm.

These results seem visually really good and really encouraging, even though they contain sometimes
a few imprecision. The algorithm managed to find regions containing the castle on most of the images in
the database, and almost none of the pictures from Pisa Tower or Franciscan Church appears on the 75
returned samples.

We can notice that we obtain several regions from the same image. This can be easily improved by
a non-maxima suppression, comparing the overlap between all detected regions, and keeping only the
region with the best overlap.

Evaulation of the results

For reasons of objectivity, we need during the development phase a way to evaluate our results, not
only visually. Thus, we wrote a function returning the sensitivity (also known as recall), specificity and
precision of the algorithm. These values are calculated as follows:

sensitivity =
#TP

#TP + #FN
,

specificity =
#TN

#TN + #FP
,

precision =
#TP

#TP + #FP
,

with the notation:

#TP = number of True Positives,
#FP = number of False Positives,
#TN = number of True Negatives,
#FN = number of False Negatives.

The problem is now how to determine if a region represents a positive or a negative example. Some-
times it can be a really difficult decision even for a human being. We decided to manually annotate each
image in the database with a class and ground truth (bounding box containing the object supposed to
be retrieved). Then, in a similar way as in [19], for each generated region, we can compare the overlap

14

Fig. 8. Top 40 regions retrieved by the algorithm.

15

between the region and the ground truth. The overlap is calculated as the quotient between the intersec-
tion and the union of the two regions Ar (retrieved region) and Ag (ground truth):

overlap =
Ar ∩Ag

Ar ∪Ag

See also the Fig. 9 for a visualization of this method. This overlap value is used to decide if the exam-
ple is a positive or a negative sample, considered positive if the overlap if higher than a given threshold.
We chose a value of 0.3 for this threshold.

Fig. 9. Classification of an example as positive or negative. In red: the groundtruth manually annotated.
In green: a detected region. In purple: the intersection between the regions. In yellow+purple: the union between
the regions. This example is obviously detected as a Negative example.

Let us now evaluate our results with this method:

sensitivity = 0.2235
specificity = 0.9971
precision = 0.3689

The sensitivity means that we managed to retrieve 22.3% of the regions considered as positive. The
specificity means that 99.7% of the negative samples were indeed not selected. The precision means that
36.9% of the returned examples were actually positive examples.

The specificity value is a really good result, we managed to eliminate most of the uninteresting regions.
However, we still have a significant proportion of false positives among the returned regions (given by
the precision) and false negatives, not detected similar regions (given the sensitivity).

This means that we can still find ways to improve the recognition algorithm. The next section lists
some possible approaches worth to try to eventually perform better results.

Nevertheless, we have to take care about not jumping to conclusions. Some other reasons can explain
these low performance results. First of all, the automatic way to detect positive examples is not 100%
accurate. This method is supposed to find all the positive samples, but is also subject to generate false

16

positive examples, which can significantly bias the results. Another point to consider is that our program
only performs detection of local similarities, which should not be confused with classification. A human
being will sometimes consider two images really similar because containing the same object, even if these
images do not have close similarities in a mathematical perspective. This is the difference between human
perception, complex combination between recognition and classification, and machine perception.

8 Remaining work

8.1 Possible improvements

Even if we already obtain really interesting results, we can imagine a lot of possible improvements.

Since we often get several similar regions from the same image, actually corresponding to the same
region but slightly shifted or scaled, we can apply some post-processing methods such as non-maxima
suppression to remove the duplicates and keep the most accurate region. We can perhaps also take this
extra information into account to increase the accuracy of the returned coordinates.

Another idea is to try to optimize the target bounding-box selected by the user by performing the
Selective Search on the input image as well and keeping only the result with best overlap with the user’s
bounding-box. This has the advantage to compare regions obtained by the same algorithm and can per-
haps improve the results, without certitude.

Some images are more challenging than the other ones, with for example huge variations of intensity.
Some preprocessing methods can be performed to solve or at least improve this probem, such as histogram
equalization on images.

Another huge improvement can be done concerning the color information. While the Google Image
search is mostly based on color histogram, our application does not use at all any color information, being
only based on shape and distribution of visual words. This can be the subject of further researches. The
simpliest idea would be to use the color version of PHOW descriptors, extracted on the three HSV image
channels and stacked into a single descriptor. More advanced methods such as using color names [20] [21],
combined with our method, can probably perform even better.

Finally, implementing the same algorithm in C can probably speed-up significantly the training and
recognition phases of our application.

8.2 Deployment on a large database

Testing this algorithm on a small database is obviously not enough, the final goal being to perform
the search on a large database. However, even with only 32 images in the database, the full training
algorithm demanded more than 24h on a 2.30 GHz Quad-Core processor, which is impossible to extend
on a larger database. At this step, we need to deploy it on a powerful parallelized system.

The ViCoS laboratory can provide three servers with 30 CPU units per machine. By adapting our
code to make it compatible with this architecture, we can considerably speed up the training and recog-
nition phases and test the application on a larger database.

As mentioned in [2], the ViCoS Eye is implemented using MapReduce [22] domain for learning with
Hadoop jobs [23], and a Storm application15 for real-time processing.

MapReduce is a programming model for processing and generating large data sets. The problem is
represented by a set of key/value pairs processed by a map function that generates a set of intermediate
key/value pairs. These new items are given to a reduce function that merges all values associated with
the same key. Apache Hadoop is an open source implementation of MapReduce.

15 https://storm.incubator.apache.org/

https://storm.incubator.apache.org/

4

Discussion and perspectives

9 Encountered difficulties

The main problem I had to face was the difficulty to reimplement the algorithms described in scientific
papers. Even if the theory is usually entirely explained and understandable, the authors sometimes do
not talk about implementation or do not mention the values of some parameters. The code is also rarely
publicly available, even for a research purpose. In order to facilitate my task and to gain time, I contacted
the authors of the paper Locality in Generic Instance Search from One Example [3] to ask if they could
send me their code, to study in details the implementation and quicken the development of my project.
Unfortunately they did not have any available code to send and adviced me to refer to the original paper.
However, this answer did not discourage me and by dint of perseverance I finally manage to develop a
working and reusable application.

10 Complementary roles of the school and the laboratory

This project perfectly followed my educational path and was a good way to combine everything I
could learn during my last years of study. Programming and Algorithmic of course, but also Discrete
Mathematics, Probability, Image Synthesis and Signal Processing were courses attended in IMAC and
really useful for an application in Computer Vision. More advanced courses in the University of Ljubljana
(Machine Learning, Machine Perception, Advanced Topics in Computer Vision) deepened my knowledge
in this topic.

All my previous experiences during my studies in Champs-sur-Marne and in Ljubljana helped me to
apprehend more easily this project, to quickly identify my problems and to find adequate solutions. In
IMAC, my most rewarding project was my tutored project ButtleOFX, through which I learnt how to
build a scalable imaging software from an existing big project and to provide a clear and documented
code ready to be reused. In the University of Ljubljana, the seminar tracking project from the course
Advanced Topics in Computer Vision led me to study a lot of papers and to learn and implement new
Computer Vision algorithms. This is why both of these educational curricula were really beneficial and
essential for this project, but also more generally in my educational background and for the acquisition
of my current expertise.

11 Professional perspective

All these years of studies, including all my projects and professional experiences during my intern-
ships, and finally this project in the Visual Cognitive Systems laboratory, led me to be able to implement
a working application following directions from tens of state-of-the-art papers and with a lot autonomy,
which is an essential skill in the professional life. I also used all my knowledge gained during the previous
years to adapt the theory and the available code to my needs, to take initiatives and implement some
relevant improvements. Therefore, this project was a perfect completion of my educational path and a
good springboard for my professional career.

I discovered the difficulties of working in the research field, but also the satisfaction in the achievement
of implementing recent scientific statements and using them to build a concrete project. This internship
comforted me in my career plan, working in the field of imaging and computer vision in a research and
development department.

5

Conclusion

During these two months in the laboratory, following several papers and advice from my tutor and
researchers, I developed an algorithm to retrieve local similarity in images from a small database. I tried
to apply a rigorous scientific approach in every step of development, and obtained really interesting and
workable results. My tasks during the next month and until the end of the internship will be to integrate
it to the existing distributed system, to make the application available as a web-service and to explore
possible ways to improve this service.

This project fitted perfectly into my educational background and professional perspective. I could
put in practice all the knowledge acquired during my study in IMAC and in the University of Ljubljana.
It even allowed me to learn into more details particular Computer Vision algorithms and methods, and
how to transform a research project into a working web-service available for a multitude of users. I also
discovered the research profession and all the difficulties related to this position.

The end of this internship does not mean the end of the project. This application will be used in
an advertising purpose, which means that my code will potentially serve as a starting point for future
commercial implementations or partnerships between investors and the laboratory. This would be a great
reward for me. As my code is divided into small building blocks working together, it can also be easily
reused for other purposes, like classification or tracking. An eventual project of trafic sign recognition
was already mentioned by my tutor.

In conclusion, I was really happy to work on this project, in a dyamic and stimulating research
laboratory, where I could learn a lot. I did my best to provide a clean and documented code, and I hope
this will be used and helpful for future projects and research topics. In any case, it was a great professional
experience for me.

6

Appendix

References

1. F. F.-H. Nah. A study on tolerable waiting time: how long are web users willing to wait?, Behaviour
IT,23(3):153163, 2004.

2. D. Tabernik, L. Čehovin, M. Kristan, M. Boben, A. Leonardis, ViCoS Eye - a webservice for visual object
categorization, The 18th Computer Vision Winter Workshop, 2013.

3. R. Tao, E. Gavves, C. G.M. Snoek, A. W.M. Smeulders, Locality in Generic Instance Search from One
Example, Conference on Computer Vision and Pattern Recognition, 2014.

4. H. Altwaijry, M. Moghimi, S. Belongie, Recognizing Locations with Google Glass: A Case Study, IEEE Winter
Conference on Applications of Computer Vision (WACV), 2014.

5. A. Vedaldi and B. Fulkerson, Vlfeat: an open and portable library of Computer Vision algorithms, International
Conference on ACM Multimedia 2010, pp. 14691472.

6. S. Maji and J. Malik, Object detection using a max-margin hough transform, Conference on Computer Vision
and Pattern Recognition, 2009.

7. Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gevers, Arnold W. M. Smeulders, Selective Search for
Object Recognition, International Journal of Computer Vision, Volume 104 (2), page 154-171, 2013.

8. P. F. Felzenszwalb and D. P. Huttenlocher, Efficient Graph-Based Image Segmentation, International Journal
of Computer Vision, 59:167-181, 2004.

9. F. Perronnin, J. Sánchez, T. Mensink, Improving the Fisher Kernel for Large-Scale Image Classification,
European Conference on Computer Vision, 2010.

10. F; Perronnin and C. Dance, Fisher Kernels on Visual Vocabularies for Image Categorization, Conference on
Computer Vision and Pattern Recognition, 2006.

11. J. Sánchez, F. Perronnin, T. Mensink, J. Verbeek, Image Classification with the Fisher Vector: Theory and
Practice, International Journal of Computer Vision, 2013.

12. H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, C. Schmid, Aggregating local image descriptors into
compact codes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012.

13. D. G. Lowe, Object recognition from local scale-invariant features, International Conference on Computer
Vision 2. pp. 11501157. doi:10.1109/ICCV.1999.790410, 1999.

14. A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests and ferns, International
Conference on Computer Vision, 2007.

15. H. Abdi and L. J. Williams, Principal component analysis, Wiley Interdisciplinary Reviews: Computational
Statistics, 2: 433459, 2010.

16. A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likelihood from Incomplete Qata via the EM
Algorithm, Journal Of The Royal Statistical Society, 39(1):138, 1977.

17. R. M. Gray and D. L. Neuhoff, Quantization, IEEE Transactions on Information Theory, Vol. 44, No 6, 1998.
18. H. Jégou, M. Douze, C. Schmid, Product quantization for nearest neighbor search, IEEE Transactions on

Pattern Analysis and Machine Intelligence 33, 2011.
19. Matej Kristan, Roman Pflugfelder, Aleš Leonardis, Jiri Matas, Fatih Porikli, Luka Čehovin, Georg Nebehay,

Gustavo Fernandez, Tomas Vojir et al., The Visual Object Tracking VOT2013 challenge results, ICCV2013
Workshops, Workshop on Visual Object Tracking Challenge, 2013.

20. J. van de Weijer, C. Schmid, J. Verbeek, Learning Color Names from Real-World Images, Conference on
Computer Vision and Pattern Recognition, 2007.

21. J. van de Weijer, C. Schmid, Applying Color Names to Image Recognition, IEEE International Conference on
Image Processing, 2007.

22. J. Dean, S. Ghemawat, and G. Inc, Mapreduce: simplified data processing on large clusters, In OSDI’04:
Proceedings of the 6th conference on Symposium on Oprating Systems Design Implementation, USENIX
Association, 2004.

23. T. White, Hadoop: The Definitive Guide, O’Reilly Media, Inc., 1st edition, 2009.

	Introduction
	Description of the internship
	The laboratory
	Project description

	Project design and implementation
	Selective search
	Fisher vectors
	Product quantization
	Query
	Preliminary results
	Remaining work
	Possible improvements
	Deployment on a large database

	Discussion and perspectives
	Encountered difficulties
	Complementary roles of the school and the laboratory
	Professional perspective

	Conclusion
	Appendix

