
Trifocal Tensor

Cédric Bidaud
Aurélien Greffard

January 6, 2013

Project state sum-up

• Asked working implemented elements :

- help

- options in command line

- points lists management

- images display

- image loading from command line

- list loading from command line

- calculation of the tensor

- transfer (works, but the approximation is not negligible)

• Asked but not working implemented elements :

- Transfer optimisation. The points given by the transfer function are
in the right zone, often very close to their theorical location, but
sometimes very far from it.

• Asked but not implemented elements : none

• Not (explicitly) asked and workink implemented elements : error messages

• Not asked and not working (or not implemented) elements : none

Report written in LaTeX.

Options list

-help : displays the help

-d : load default point lists

-l : load last saved point lists

file.list / .mat : load external point lists

file.jpg / .png / .gif : load external images

1

Chapter 1

Analysis

1.1 Tensor calculation

From the equation extracted and given in the subject :

xk(x′ix′′3T 3l
k − x′3x′′3T il

k − x′ix′′lT 33
k + x′3x′′lT i3

k) = 0il(1)

which actually corresponds to a system of several equations. In order to calcu-
late the vector t, we have to rewrite this system as a matrix of type At = 0,
which means to build this matrix A. Each element of A corresponds to the co-
efficients in the equations which are just before elements of t. Different loops
will allow us to insert correct coefficients in their right places in the matrix.

First step consists in initializing elements of A to 0. Indeed, in each equation
of the system, only 12 elements of t on 27 appear, which means others have a
null coefficient. Eigen provides some tools to directly initialize matrix A to 0.

Second step consists in filling matrix A. When examining equation (1), we
understand this filling will be managed with 4 loops : 3 loops on p, i and l, which
select the right line of the matrix, because they are variables which create new
equations, then a loop on k, which selects the right column, according to the t
coordinate we are working on.

In the subject, i and l vary from 1 to 2, p from 1 to the number of match
points, and k from 1 to 3. As lines and columns of our matrices start from 0, we
will have i and l varying from 0 to 1, k from 0 to 2 and p from 0 to the number
of points -1.

Coefficients we will insert in A will depend on coordinates of x, x’ et x”
points. Now, these coordinates are saved in our matching points lists, which
means in a matrix form. We have to be able to get them back too. For instance,
if we consider that points of the first, second and third image are respectively
saved in matrices list1, list2 and list3, then k coordinates of the matching point
p of the first image is list1(p, k).

Last step consists in calculating t with SVD method, provided by Eigen.
Matrix A is decomposed in a 3 matrices product U*D*V, and we can save the

2

tensor values, which correspond to the last column of V (column 26 in our case).

This way, still from equation (1), we get to the following pseudocode :

Algorithm 1 Tensor calculation

Initiate A to 0
for p = 0 to nbPoints− 1 do

for i = 0 to 1 do
for l = 0 to 1 do

for k = 0 to 2 do
A(4*p + 2*i + l, 9*2 + 3*l + k) += list1(p,k) * list2(p,i) * list3(p,2)

A(4*p + 2*i + l, 9*i + 3*l + k) -= list1(p,k) * list2(p,2) * list3(p,2)

A(4*p + 2*i + l, 9*2 + 3*2 + k) -= list1(p,k) * list2(p,i) * list3(p,l)

A(4*p + 2*i + l, 9*i + 3*2 + k) += list1(p,k) * list2(p,2) * list3(p,l)
end for

end for
end for

end for
A = UDV {SVD decomposition}
tensor ← V.col(26)

1.2 Transfer

Now that t is known, we want to find a point from the two others. The principle
is the same : first rewrite the system as a matrix, and then fill a matrix B.

Before starting and calculating a 3 coordinates vector just like in the last
step, it could be a good thing to notice that the 3rd coordinate of the point we
are looking for is known and is equal to 1, as it is its homogeneous coordinate.
We only have 2 unknown coordinates then and this time, we have to solve a
matrix equation of the form Bv = b, with v the 2 coordinates vector.

We should rewrite equation (1) with this last point in mind. To be able to
find a point on any image from the two others, we have to examine this equation
for each of the 3 cases.

If we are looking for the point x’, then x’3 is equal to 1, which leads us to
the following equation :

xkx′ix′′3T 3l
k − xkx′ix′′lT 33

k = xkx′′3T il
k − xkx′′lT i3

k

If we are looking for the point x”, then x”3 is equal to 1, which leads us to
the following equation :

xkx′3x′′lT i3
k − xkx′ix′′lT 33

k = xkx′3T il
k − xkx′iT 3l

k

3

Finally, if we are looking for the point x, then x3 is equal to 1, which leads
us to the following equations :

if k=3 :

x′ix′′3T 3l
k − x′3x′′3T il

k − x′ix′′lT 33
k + x′3x′′lT i3

k = 0il

else :

xk(x′ix′′3T 3l
k − x′3x′′3T il

k − x′ix′′lT 33
k + x′3x′′lT i3

k) = 0il

This time, we have to fill the matrix B and the vector b. To avoid confusions,
we will use MatB and Vecb instead of B and b.

Algorithm 2 Transfer

Require: x1 and x2 are known
Initiate MatB to 0
Initiate Vecb to 0
for i = 0 to 1 do

for l = 0 to 1 do
for k = 0 to 2 do

if we search the point x then
factor = x1(i) * x2(2) * tensor(2, l, k) - x1(2) * x2(2) * tensor(i, l,
k) - x1(i) * x2(l) * tensor(2, 2, k) + x1(2) * x2(l) * tensor(i, 2, k)
if k=2 then

Vecb(2*i + l) -= factor
else

MatB(2*i + l, k) += factor
end if

else if we search the point x’ then
MatB(2*i + l, i) += x1(k) * (x2(2) * tensor(2, l, k) - x2(i) *
tensor(2, 2, k))
Vecb(2*i + l) -= x1(k) * (x2(l) * tensor(i, 2, k) - x2(2) * tensor(i,
l, k))

else if we search the point x” then
MatB(2*i + l, l) += x1(k) * (x2(2) * tensor(i, 2, k) - x2(i) *
tensor(2, 2, k))
Vecb(2*i + l) -= x1(k) * (x2(i) * tensor(2, l, k) - x2(2) * tensor(i,
l, k))

end if
end for

end for
end for
MatB = UDV {SVD decomposition}
solution← SV D.solve(V ecb)

4

Chapter 2

The program

In this part, we will explain our objects, structures and functionalities choices.

2.1 Data structures

2.1.1 Tensor

The tensor is an object with a vector of n elements - Eigen::VectorXf - initial-
ized with zeros and methods to easily acces an element - operator () surcharge,
and of course fill it and get its elements. Once filled it can also calculate the
transfered point from two points clicked on images.

The fill and transfer methods could have been part of the Tensor class, but
it was clearer for us to set them apart.

2.1.2 Point lists

The matching points are saved in lists. The first two numbers are the x and y
coordinates clicked on the image, the third is the homogeneous coordinate (1).
To remain coherent, the points are saved in the same order as the one they are
clicked on the images.

In the program, lists are matrices - Eigen MatrixXf. For each matrix cor-
responds an int that saves its rows count. It’s usefull to add a point to a list :
as we strangely didn’t find any push method for Eigen matrices, we wrote ours.
This implied to resize the matrix we wanted to push, that’s why we decided to
save this number for a practical reason - also usefull for some tests.

2.1.3 Others

To perform the transfer, we have to know which image to find, and there-
fore wich images have been clicked. In order to minimize the various cases of
treatment, we use the std::set container, wich allows us to save points in the
correct order regardless of the order in which they were clicked. We define two

5

sets : the first (called pointsTransfert) for the points, and the second (called
unknownImage) for the images. pointsTransfert is initializated to NULL
and unknownImage to (1, 2, 3) because at the beginning no point was clicked.

When an image is clicked, its id is removed from the unknownImage set and
added in the pointsTransfert set. When pointsTransfert contains 2 elements,
then we can do the transfer because we are sure to have two different points in
the right order. The corresponding image (where the transfered point must be
written) is the only one left in the unknownImage container.

2.2 Algorithms

As algorithms used to calculate the tensor and the transfer function have already
been explained in the first chapter, we will here focus on algorithms related to
the good working of the program.

2.2.1 Options

One of the key features asked is the possibility to handle options entered in
command line. As we never managed this kind of options, we had to find a
solution to efficiently analyse arguments given to the program. We choose to
convert argv arguments in an array of strings - std::string. It provided us the
usefull strcmp method, which allows to compare a string to another.

Algorithm 3 Options

for each argument do
for each option do

if argument corresponds to an option then
execute the option

end if
end for

end for

The list of the different options implemented can be found on the first page.
As the searches for lists or images arguments rely on the same algorithm, we

will only describe the one for the images. We are located at the “Execute the
option” point.

Algorithm 4 Search for images

Require: externalImages = 0, the number of loaded images
if argument corresponds to an option (contains .jpg, .png or .gif) then

if externalImages = 3 then
too many images loaded, the first three are kept

else
load image (if possible) and increment externalImages

end if
end if

6

This algorithm assures us that the user won’t load too many images. To be
sure that he doesn’t load less, we make another verification after browsing all
the arguments : if the number of external images is less than 3, the program
loads default images, with a message which indicates if there is no or not enough
images loaded.

2.2.2 Program states

The program runs with three states :

FILL LISTS is the standard state, where the user fills the matching points
lists by clicking on the images. If the three lists are filled, the tensor
calculation can be launched by pressing Enter.

TRANSFERT is the state the program enters if the tensor is successfully
calculated. The user must now click two points on two different images to
launch the calculation of the coordinates of the transfered point.

SOLUTION is the last state, where the program displays the transfered point
according to the two points clicked in TRANSFERT state.

These three states alter the behaviour of input commands (mouse and key-
board) and are checked in the event management loop.

2.3 Optimisations

As we said in the sum-up at the begining of this report, the transfer function is
not always accurate. We have several ideas to improve the precision, but didn’t
manage or didn’t have the time to implement them. For example : http://

users.cecs.anu.edu.au/~hartley/Papers/tensor/journal/final/tensor3.

pdf page 9 section Normalization. We will quote here this report :

Normalization. Before setting out to write and solve the equa-
tions, it is a very good idea to normalize the data by scaling and
translating the points. The algorithm does not do well if all points
are of the form (u1 , u2 , 1) in homogeneous coordinates with u1 and
u2 very much larger than 1. A heuristic that works well is to trans-
late the points in each image so that the centroid of all measured
points is at the origin of the image coordinates, and then scaling so
that the average distance of a point from the origin is 2 units. In
this way the average point will be something like (1, 1, 1) in homo-
geneous coordinates, and each of the homogeneous coordinates will
be approximately of equal weight. This transformation improves the
condition of the matrix of equations, and leads to a much better solu-
tion. Despite the seemingly harmless nature of this transformation,
this is an essential step in the algorithm.

Another way to improve our program would be to set up a real errors man-
ager. For the moment, the program just displays an error message then crashes
if a problem appears.

7

http://users.cecs.anu.edu.au/~hartley/Papers/tensor/journal/final/tensor3.pdf
http://users.cecs.anu.edu.au/~hartley/Papers/tensor/journal/final/tensor3.pdf
http://users.cecs.anu.edu.au/~hartley/Papers/tensor/journal/final/tensor3.pdf

	Analysis
	Tensor calculation
	Transfer

	The program
	Data structures
	Tensor
	Point lists
	Others

	Algorithms
	Options
	Program states

	Optimisations

